Thiên văn học quan sát Thiên_văn_học

Mạng cực lớn tại New Mexico, một ví dụ về kính viễn vọng radio.

Trong thiên văn học, thông tin chủ yếu được tiếp nhận từ việc khám phá và phân tích ánh sáng nhìn thấy được hay các vùng khác của bức xạ điện từ.[21] Thiên văn học quan sát có thể được phân chia theo vùng quan sát của quang phổ điện từ. Một số phần của quang phổ có thể được quan sát từ bề mặt Trái Đất, trong khi những phần khác chỉ có thể được quan sát từ các độ cao lớn hay từ vũ trụ. Thông tin đặc biệt về các lĩnh vực nhỏ đó được cung cấp ở dưới đây.

Thiên văn học radio

Bài chi tiết: Thiên văn vô tuyến

Thiên văn học radio nghiên cứu bức xạ với các bước sóng lớn hơn hay xấp xỉ 1 milimét.[22] Thiên văn học radio khác biệt so với hầu hết các hình thức thiên văn học quan sát khác trong đó các sóng radio được quan sát có thể được coi là các sóng chứ không phải các photon riêng biệt. Vì thế, nó khá dễ dàng để đo cả biên độphase của các sóng radio, trong khi điều này không dễ thực hiện ở các bước sóng ngắn hơn.[22]

Dù một số sóng radio được tạo ra bởi các vật thể thiên văn dưới hình thức phát xạ nhiệt, hầu hết phát xạ radio được quan sát từ Trái Đất được thấy dưới hình thức bức xạ synchrotron, được tạo ra khi các electron dao động quanh các từ trường.[22] Ngoài ra, một số lượng vạch quang phổ do khí liên sao tạo ra, đáng chú ý là vạch quang phổ hydro ở kích thước 21 cm, có thể được quan sát ở các bước sóng radio.[8][22]

Rất nhiều vật thể có thể được quan sát ở các bước sóng radio, gồm sao siêu mới, khí liên sao, các pulsar, và các nhân thiên hà hoạt động.[8][22]

Thiên văn học hồng ngoại

Thiên văn học hồng ngoại chịu trách nhiệm thám sát và phân tích bức xạ hồng ngoại (các bước sóng dài hơn ánh sáng đỏ). Ngoại trừ các bước sóng gần ánh sáng nhìn thấy được, bức xạ hồng ngoại bị khí quyển hấp thụ mạnh, và khí quyển cũng tạo ra nhiều phát xạ hồng ngoại. Vì thế, các đài quan sát hồng ngoại được đặt ở những địa điểm cao và khô hay trong không gian. Quang phổ hồng ngoại rất hữu dụng khi nghiên cứu các vật thể quá lạnh để có thể phát xạ ra ánh sáng nhìn thấy được, như các hành tinh và đĩa cạnh sao. Các bước sóng hồng ngoại dài hơn cũng có thể xuyên qua vào các đám mây bụi vốn ngăn ánh sáng, cho phép quan sát các ngôi sao trẻ trong các đám mây phân tử và lõi của các thiên hà.[23] Một số phân tử phát xạ mạnh ở dải sóng hồng ngoại, và điều này có thể được sử dụng để nghiên cứu hoá học không gian, cũng như phát hiện ra nước trong các thiên thạch.[24]

Thiên văn học quang học

Kính viễn vọng Subaru (bên trái) và Đài quan sát Keck (trung tâm) tại Mauna Kea, chúng là hai ví dụ về một đài quan sát thiên văn hoạt động ở các bước sóng gần hồng ngoại và có thể thấy được. Cơ sở Kính viễn vọng Hồng ngoại NASA (bên phải) là một ví dụ về một kính thiên văn chỉ hoạt động ở các bước sóng gần hồng ngoại.

Về lịch sử, thiên văn học quang học, cũng có thể được gọi là thiên văn học ở ánh sáng nhìn thấy được, là hình thức cổ nhất của thiên văn học.[25] Các hình ảnh quang học ban đầu được vẽ bằng tay. Cuối thể kỷ mười chín và trong hầu hết thế kỷ hai mươi, các hình ảnh được thực hiện bằng thiết bị chụp ảnh.

Các hình ảnh hiện đại sử dụng thiết bị thám sát số, đặc biệt là các thiết bị thám sát sử dụng cảm biến charge-coupled devices (CCD). Dù chính ánh sáng nhìn thấy được kéo dài từ xấp xỉ 4000 Å tới 7000 Å (400 nm tới 700 nm),[25] thiết bị tương tự cũng được sử dụng để quan sát một số bức xạ gần cực tímgần hồng ngoại.

Thiên văn học cực tím

Thiên văn học cực tím nói chung được dùng để chỉ những quan sát tại các bước sóng cực tím giữa xấp xỉ 100 và 3200 Å (10 to 320 nm).[22] Ánh sáng ở các bước sóng này bị khí quyển Trái Đất hấp thụ, vì thế những quan sát ở các bước sóng đó phải được tiến hành từ thượng tầng khí quyển hay từ không gian. Thiên văn học cực tím thích hợp nhất để nghiên cứu bức xạ nhiệt và các đường phát xạ từ các ngôi sao xanh nóng (Sao OB) rất sáng trong dải sóng này. Điều này gồm các ngôi sao xanh trong các thiên hà khác, từng là các mục tiêu của nhiều cuộc nghiên cứu cực tím. Các vật thể khác thường được quan sát trong ánh sáng cực tím gồm tinh vân hành tinh, tàn tích sao siêu mới, và nhân thiên hà hoạt động.[22] Tuy nhiên, ánh sáng cực tím dễ dàng bị bụi liên sao hấp thụ, và việc đo đạc ánh sáng cực tím từ các vật thể cần phải được tính tới số lượng đã mất đi.[22]

Thiên văn học tia X

Bài chi tiết: Thiên văn học tia X

Thiên văn học tia X là việc nghiên cứu các vật thể vũ trụ ở các bước sóng tia X. Đặc biệt là các vật thể phát xạ tia X như phát xạ synchrotron (do các electron dao động xung quanh các đường từ trường tạo ra), phát xạ nhiệt từ các khí mỏng (được gọi là phát xạ bremsstrahlung) ở trên 107 (10 triệu) độ kelvin, và phát xạ nhiệt từ các khí dày (được gọi là phát xạ vật thể tối) ở trên 107 độ Kelvin.[22] Bởi các tia X bị khí quyển Trái Đất hấp thụ, toàn bộ việc quan sát tia X phải được thực hiện trên những khí cầu ở độ cao lớn, các tên lửa, hay tàu vũ trụ. Các nguồn tia X đáng chú ý gồm sao kép tia X, pulsar, tàn tích sao siêu mới, thiên hà elíp, cụm thiên hà, và nhân thiên hà hoạt động.[22]

Thiên văn học tia gamma

Thiên văn học tia gamma là việc nghiên cứu các vật thể vũ trụ ở các bước sóng ngắn nhất của quang phổ điện từ. Các tia gamma có thể được quan sát trực tiếp bằng các vệ tinh như Đài quan sát Tia Gamma Compton hay bởi các kính viễn vọng đặc biệt được gọi là kính viễn vọng khí quyển Cherenkov.[22] Các kính viễn vọng Cherenkov trên thực tế không trực tiếp thám sát các tia gamma mà thay vào đó thám sát các đám loé bùng của ánh sáng nhìn thấy được tạo ra khi các tia gamma bị khí quyển Trái Đất hấp thụ.[26]

Đa số các nguồn phát xạ tia gamma trên thực tế là các loé bùng tia gamma, các vật thể chỉ tạo ta bức xạ gamma trong vài phần triệu tới vài phần ngàn giây trước khi mờ nhạt đi. Chỉ 10% nguồn tia gamma là các nguồn kéo dài. Những vật thể phát xạ tia gamma bền vững đó gồm các pulsar, sao neutron, và các vật thể bị cho là hố đen như các nhân thiên hà hoạt động.[22]

Thiên văn học neutrino

Trong thiên văn học neutrino, các nhà thiên văn học sử dụng hệ thống quan sát neutrino đặt ngầm dưới đất như SAGE, GALLEX, và Kamioka II/III để thám sát các neutrino. Các neutrino này chủ yếu có nguồn gốc từ Mặt trời nhưng cũng có từ các sao siêu mới.[22]

Các tia vũ trụ gồm các phần tử có năng lượng rất cao có thể phân rã hay bị hấp thụ khi đi vào khí quyển Trái Đất, tạo ra các đợt phân tử.[27] Ngoài ra, một số hệ thống quan sát neutrino tương lai có thể nhạy cảm với các neutrino được tạo ra khi các tia vũ trụ đâm vào khí quyển Trái Đất.[22]

Các lĩnh vực không dựa trên quang phổ điện từ

LIGO đo được sóng hấp dẫn tại trạm Livingston (phải) và trạm Hanford (trái), tín hiệu này khớp với giá trị dự đoán theo thuyết tương đối rộng.

Ngoài việc phát xạ điện từ, một số vật thể có thể được quan sát từ Trái Đất có nguồn gốc từ những khoảng cách rất xa.

Thiên văn học sóng hấp dẫn là một ngành mới xuất hiện của thiên văn học, nó có mục đích sử dụng các thiết bị thám sát sóng hấp dẫn để thu thập các dữ liệu quan sát về các vật thể nén. Một số cuộc quan sát đã được tiến hành, như Laser Interferometer Gravitational Observatory LIGO, tuy nhiên các sóng hấp dẫn rất khó quan sát.[28] Sau 100 năm Einstein tiên đoán tồn tại sóng hấp dẫn, LIGO đã thu được trực tiếp tín hiệu sóng hấp dẫn lần đầu tiên từ kết quả hai lỗ đen sáp nhập vào ngày 14 tháng 9 năm 2015, và phát hiện này được Quỹ Khoa học Quốc gia (NSF) thông báo trong cuộc họp báo tổ chức ngày 11 tháng 2 năm 2016.[29][30][31] Tín hiệu sóng hấp dẫn thứ hai cũng đo được bởi LIGO vào ngày 26 tháng 12 năm 2015 và có thể thêm nhiều tín hiệu nữa đo được trong tương lai nhưng để phát hiện được sóng hấp dẫn đòi hỏi những thiết bị có độ nhạy rất cao.[32][33]

Thiên văn học hành tinh đã được hưởng lợi từ việc quan sát trực tiếp dưới hình thức tàu vũ trụ và các phi vũ lấy mẫu vật. Chúng gồm các phi vụ bay lướt qua với các cảm biến từ xa; các thiết bị hạ cánh có thể tiến hành thực nghiệm với các vật thể trên bề mặt; các thiết bị nén cho phép cảm biến từ xa vật thể bị chôn vùi phía dưới, và các phi vụ lấy mẫu cho phép thực hiện thí nghiệm trực tiếp trong phòng thí nghiệm.

Các cơ cấu vũ trụ và phép đo sao

Một trong những lĩnh vực cổ nhất của thiên văn học, và trong mọi ngành khoa học, là việc đo đạc các vị trí của các vật thể vũ trụ. Về mặt lịch sử, hiểu biết chính xác về các vị trí của Mặt trời, Mặt Trăng các hành tinh và các ngôi sao là kiến thức rất quan trọng trong hoa tiêu thiên văn.

Những đo đạc tỉ mỉ về các vị trí của các hành tinh đã dẫn tới sự hiểu biết chính xác về các nhiễu loạn hấp dẫn, và khả năng xác định các vị trí trong quá khứ và trong tương lai của các hành tinh với độ chính xác rất cao, một lĩnh vực được gọi là các cơ cấu vũ trụ. Gần đây hơn việc thám sát các vật thể gần Trái Đất sẽ cho phép các thực hiện các dự đoán về các vụ va chạm gần, và những vụ va chạm có khả năng diễn ra, với Trái Đất.[34]

Việc đo đạc thị sai sao của các ngôi sao ở gần cung cấp những cơ sở nền tảng cho thang khoảng cách vũ trụ được sử dụng để đo đạc tầm mức vũ trụ. Các đo đạc thị sai của các ngôi sao ở gần cung cấp một cơ sở chắc chắn về các tính chất của các ngôi sao ở xa hơn, bởi các tính chất của chúng có thể được so sánh. Việc đo đạc tốc độ xuyên tâmchuyển động thực thể hiện động học của các hệ thống đó xuyên qua thiên hà Ngân hà. Các kết quả đo đạc sao cũng được sử dụng để đo sự phân bố của vật thể tối trong thiên hà.[35]

Trong thập niên 1990, kỹ thuật đo đạc lắc lư sao đã được dùng để thám sát các hành tinh ngoài thái dương hệ lớn quay quanh các ngôi sao ở bên cạnh.[36]

Tài liệu tham khảo

WikiPedia: Thiên_văn_học http://www.literature.at/elib/index.php5?title=Ast... http://www.astro.queensu.ca/~hanes/p014/Notes/Topi... http://www.astropix.com/ http://www.europhysicsnews.com/full/20/article8/ar... http://books.google.com/books?id=4DJpDW6IAukC&pg=P... http://books.google.com/books?id=Pk-bZMS_KdUC&pg=P... http://www.lunar-occultations.com/iota/iotandx.htm http://www.m-w.com/dictionary/astronomy http://www.m-w.com/dictionary/astrophysics http://www.nature.com/news/einstein-s-gravitationa...